A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011
نویسندگان
چکیده
The initial genome-scale reconstruction of the metabolic network of Escherichia coli K-12 MG1655 was assembled in 2000. It has been updated and periodically released since then based on new and curated genomic and biochemical knowledge. An update has now been built, named iJO1366, which accounts for 1366 genes, 2251 metabolic reactions, and 1136 unique metabolites. iJO1366 was (1) updated in part using a new experimental screen of 1075 gene knockout strains, illuminating cases where alternative pathways and isozymes are yet to be discovered, (2) compared with its predecessor and to experimental data sets to confirm that it continues to make accurate phenotypic predictions of growth on different substrates and for gene knockout strains, and (3) mapped to the genomes of all available sequenced E. coli strains, including pathogens, leading to the identification of hundreds of unannotated genes in these organisms. Like its predecessors, the iJO1366 reconstruction is expected to be widely deployed for studying the systems biology of E. coli and for metabolic engineering applications.
منابع مشابه
Standardized network reconstruction of E. coli metabolism
We have created a genome-scale network reconstruction of Escherichia coli metabolism. Existing reconstructions were improved in terms of annotation standards, to facilitate their subsequent use in dynamic modelling. The resultant network is available from EcoliNet (http://ecoli.sf.net/).
متن کاملA genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information
An updated genome-scale reconstruction of the metabolic network in Escherichia coli K-12 MG1655 is presented. This updated metabolic reconstruction includes: (1) an alignment with the latest genome annotation and the metabolic content of EcoCyc leading to the inclusion of the activities of 1260 ORFs, (2) characterization and quantification of the biomass components and maintenance requirements ...
متن کاملCorrigendum: EColiCore2: a reference network model of the central metabolism of Escherichia coli and relationships to its genome-scale parent model
Genome-scale metabolic modeling has become an invaluable tool to analyze properties and capabilities of metabolic networks and has been particularly successful for the model organism Escherichia coli. However, for several applications, smaller metabolic (core) models are needed. Using a recently introduced reduction algorithm and the latest E. coli genome-scale reconstruction iJO1366, we derive...
متن کاملEColiCore2: a reference network model of the central metabolism of Escherichia coli and relationships to its genome-scale parent model
Genome-scale metabolic modeling has become an invaluable tool to analyze properties and capabilities of metabolic networks and has been particularly successful for the model organism Escherichia coli. However, for several applications, smaller metabolic (core) models are needed. Using a recently introduced reduction algorithm and the latest E. coli genome-scale reconstruction iJO1366, we derive...
متن کاملConstruction of an E. Coli genome-scale atom mapping model for MFA calculations.
Metabolic flux analysis (MFA) has so far been restricted to lumped networks lacking many important pathways, partly due to the difficulty in automatically generating isotope mapping matrices for genome-scale metabolic networks. Here we introduce a procedure that uses a compound matching algorithm based on the graph theoretical concept of pattern recognition along with relevant reaction informat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2011